Figure 9. Streamlines around mainsails and
spinnaker in a downwind leg.

several hundred), it was necessary to build the ge-
ometrical model—about 300 splines surfaces are
needed to overlay the whole boat—to create the
grid on the surface of all the elements of the boat
reliable enough to enable the determination of
the transition between laminar flow and turbulent
flow regions, and consequently to generate the
volumetric grid in external domain. The Navier-
Stokes equations for incompressible viscous flows
must be used to describe both water and wind
dynamics and the consequent free surface, which
need to be completed by additional equations that
allow the computation of turbulent energy and
its dissipation rate. These equations cannot be
solved exactly to yield explicit solutions in closed
form. Their approximate solution requires the
introduction of refined discretization methods,
which allow an infinite dimensional problem to
be transformed into a big but finite dimensional
one. The typical calculation, based on finite vol-
ume schemes, involved the solution of nonlinear
problems with many millions of unknowns. Using
parallel algorithms, 24 hours on parallel calcula-
tion platforms with 64 processors were necessary
to produce a simulation, characterized by more
than 160 million unknowns. A further compu-
tation is concerned with the simulation of the
dynamical interaction between wind and sails by
fluid-structure algorithms. These simulations en-
able the design team to eliminate those solutions
that seem innovative and to go on with those that
actually guarantee better performance. Moreover,
by simulating the effects of aerodynamic interac-
tion between two boats, one can determine the
consistency of shadow regions (the areas with less
wind because of the position of a boat with re-
spect to the other), the flow perturbation, and the
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turbulence vorticity generated by the interaction
of the air, thus obtaining useful information for
the tactician as well. These studies aim to design
a boat having an optimal combination of the four
features that an America’s Cup yacht must have:
lightness, speed, resistance, and maneuverability
necessary to change the race outcome.

A more in-depth description of the mathemat-
ical tools necessary for this kind of investigation
is provided in the next section.

Mathematical Models for America’s Cup
The standard approach adopted in the America’'s
Cup design teams to evaluate whether a design
change (and all the other design modifications that
this change implies) is globally advantageous, is
based on the use of a Velocity Prediction Program
(VPP), which can be used to estimate the boat
speed and attitude for any prescribed wind con-
dition and sailing angle. A numerical prediction
of boat speed and attitude can be obtained by
modeling the balance between the aerodynamic
and hydrodynamic forces acting on the boat.

For example, on the water plane, a steady sailing
condition is obtained imposing two force balances
in the x direction (aligned with the boat velocity)
and the y direction (normal to x on the water
plane) and a heeling moment balance around the
centerline of the boat:

Dy+T,= 0,
(1) Sh & Sa =0,
My + Mg =0,

where D, is the hydrodynamic drag (along the
course direction), T, is the aerodynamic thrust,
Sp, is the hydrodynamic side force perpendicular
to the course, S, is the aerodynamic side force,
M, and M, are, respectively, the hydromechani-
cal righting moment and the aerodynamic heeling
moment around the boat mean line. The angle
By between the course direction and the boat
centerline is called yaw angle. The aerodynamic
thrust and side force can be seen as a decom-
position in the reference system aligned with the
course direction of the aerodynamic lift and drag,
which are defined on a reference system aligned
with the apparent wind direction. Similar balance
equations can be obtained for the other degrees
of freedom.

In a VPP program, all the terms in system
(1) are modeled as functions of boat speed, heel
angle, and yaw angle. Suitable correlations he-
tween the degrees of freedom of the system and
the different force components can be obtained
based on different sources of data: experimen-
tal results, theoretical predictions, and numerical
simulations.

The role of advanced computational fluid dy-
namics is to supply accurate estimates of the
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Figure 10. Forces and moments acting on boat.

forces acting on the boat in different sailing con-
ditions in order to improve the reliability of the
prediction of the overall performance associated
with a given design configuration.

The flow equations

Let Q denote the three-dimensional computational
domain in which we solve the flow equations. If
is a region surrounding the boat B, the computa-
tional domain is the complement of B with respect
to Q, that is O = O\B. The equations that gov-
ern the flow around B are the density-dependent
(or inhomogeneocus) incompressible Navier-Stokes
equations, which read:

0y 0P N

2 §+V-(pu)70 |

3) a(gtu) +V - (pudu}y—V-1{n,p) =pg
4 vV-u=0

for x € Q and 0 < t < T, and where p is the
{variable) density, u is the velocity field, p is the
pressure, g = (0,0, )7 is the gravity acceleration,
and T(u,p) = p(Vu+ Vu') — pl is the stress ten-
sor with g indicating the (variable) viscosity. The
above equations have to be complemented with
Suitable initial conditions and boundary condi-
tions. For the latter we typically consider a given
velocity profile at the inflow houndary, with a flat
far {ield free-surface elevation.

In the case we are interested in, the compu-
tational domain Q is made of two regions, the
volume 0, occupied by the water and that Q,
occupied by the air. The interface T separating
0, from £, is the (unknown) free-surface, which
may be a disconnected two-dimensional manifold
if wave breaking is accounted for. The unknown
density p actually takes two constant states, p., (in
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Q,,) and p, (in ;). The values of g, and p, depend
on the {luid temperatures, which are considered
to be constant in the present model. The fluid
viscosities p, (in Q) and u, (in Q) are constants
that depend on gy, and p,, respectively.

The set of equations (2)-(4) can therefore be
seen as a model for the evolution of a two-phase
flow consisting of two immiscible incompressible
fluids with constant densities p,. and p, and dif-
ferent viscosity coefficients w,, and p,. In this
respect, in view of the numerical simulation, we
could regard equation (2) as the candidate for
updating the {unknown) interface location T, then
treat equations (3)-(4) as a coupled system of
Navier-Stokes equations in the two sub-domains

Q,, and Q,: N S

O(pwihy)
ot

V- Uy = 0;
in Qw X (Oy T)l

{palla)
ot

V-, =0,

0, (0, T). Wehave set ., (i1, P} = (VL +
Vu,") — pwl, while T,(u,, ps) is defined similarly.
The free surface I is a sharp interface between
Q,, and Q,, on which the normal components of
the two velocities u, - 1 and u,, - 1 should agree. Fur-
thermore, the tangential components must match
as well since the two flows are incompressible.
Thus we have the following kinematic condition

{5}
Moreover, the forces acting on the fluid at the

+ V- {palty ® uil) - V TQI(H&,DaI) = :pag.

u; =i, onl.

free-surface are in equilibrium,. This is a dynamic. .

condition and means that the normal forces on ei-.

ther side of T are of equal magnitude and opposed::

+ V- {pwu‘.v D Uy) =V - T)\!(Hl;’: Pow) = Pivg.




direction, while the tangential forces must agree
in both magnitude and direction:

(6) Talug,py) - 0= Tywlly,Py) - H+Kon onl,

where o is the surface tension coefficient, that is
a force per unit length of a free surface element
acting tangentially to the free-surface. It is a prop-
erty of the liquid and depends on the temperature
as well as on other factors. The quantity x in (6) is
the curvature of the free-surface, k = R;' + R},
where R, and R,, are radii of curvature along the
coordinates (f,,f;) of the plane tangential to the
free-surface (orthogonal to »).

Coupling with a 6-DOF rigid body dynamical
system
The attitude of the boat advancing in calm water
or wavy sea is strictly correlated with its perfor-
mance. For this reason, a state-of-the-art namerical
tool for yacht design predictions: should be able
to account for the boat irotion: -

FoIlowmg the approach ‘adopted: in [2 3], two
orthogonal cartesian reference’ systems: areicon:
sidered: an inértial reference’ system (0, X, Y, 2),:

which moves forward with the mean boat speed 2

and a body-fixed reference system (G,X,¥,2), . the $ail surface exerted by the flowfield). In fact,

RNex represents a wider (bounded and disconnected)

whose origin is the boat center of mass ¢, which
translates and rotates with the boat. The XY plane
in the inertial reference system is parallel to the
undisturbed water surface, and the Z-axis peints
upward. The body-fixed x-axis is directed from
bow to stern, y positive starboard, and z upwards.

The dynamics of the boat in the 6 degrees of
freedom are determined by integrating the equa-
tions of variation of linear and angular momentum
in the inertial reference system, as follows

(7) mX,=F
(8) TIT 'O+ QxTIT 'Q =M,

where m is the boat mass, X is the linear accel-
eration of the center of mass, F is the force acting
on the boat, O and Q are the angular acceleration
and velocity, respectively, M is the moment with
respect to G acting on the boat, I is the tensor of
inertia of the boat about the body-fixed reference
system axes, and T is the transformation martrix
hetween the body-fixed and the inertial reference
system (see [2] for details).

The forces and moments acting on the boat are
given by

F =
Mg =

FFlow +mg + Fra
MFluw + (XExt - XG} x FExt

where Frew and Mpg, are the force and moment,
respectively, due to the interaction with the flow
and Fpy is an external forcing term (which may
model, e.g., the wind force on sails) while Xy, is
its application point.
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The equations for wind-sails interaction

The sail deformation is due to the fluid motion:
the aerodynamic pressure field deforms the sail
surfaces and this, in its tumm, modifies the flow
field around the sails.

From a mathematical viewpoint, this yields a
coupled system that comprises the incompress-
ible Navier-Stokes equations with constant density
P = Pair (3-4) and a second order elastodynamic
equation that models the sail deformation as that
of a membrane. More specifically, the evolution
of the considered elastic structure is governed
by the classical conservation laws for contlnuum
mechanics.

Considering a Lagrangian framework, if (i is
the reference 2D domain occupied by the sails, the
governing equation can be written as follows:

a%d

c =V ¢ " in O,
{9 Ps o = Veg(dy+f,  in Qux(0,T],

where py is the material density, the displacement
dis a function of the space coordinates x € {; and
of the time t € [0; T], & are the internal stresses
while f, are the external loads acting on the sails

- (these are indeed the normal stresses 7(u, p) - non

domain that includes also the mast and the yarns
as parts of the structural model. The boundary of
Q, is denoted by 90, and [0;T] ¢ R* is the time
interval of our analysis. For suitable initial and
bhoundary conditions and an assignment of an ap-
propriate constitutive equation for the considered
materials (defining o;{d)), the displacement field
d is computed by solving (9) in its weak form:

—[ 0%d;
A,

J2 o (6d, )dx+J oy (Sex)dx

(10)
= [ fatodiax,
Qs

where o is the second Piola-Kirchoff stress ten-
sor, € 1s the Green-Lagrange strain tensor, and éd
are the test functions expressing the virtual defor-
mation. The second coupling condition enforces
the continuity of the two velocity fields, u and 2 ar’
on the sail surface.

Fluid-structural coupling algorithm

As previously introduced, the coupling procedure
iteratively loops between the fluid solver {passing
sail velocities and getting pressure fields) and the
structural solver (passing pressures and - getting
velocities and structural deformations) until the
structure undergoes no more deformations be-
cause a perfect balance of forces and moments is
reached. When dealing with transient simulations,
this must be true for each time step, and the
sail geometry evolves over tite as a sequence of
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converged states. On the other hand, a steady sim-
ulation can be thought of as a transient one with
an infinite time step, such that “steady” means
a sort of average of the true (unsteady) solution
over time. More formally, we can define twa oper-
ators called Fluid and Struct that represent the
fhuid and structural solvers, respectively. In par-
ticular, F1uid can be any procedure that can solve
the incompressible Navier-Stokes equations while
Struct should solve a membrane-like problem,
possibly embedding suitable nonlinear models to
take into account complex phenomena such as, for
example, the structural reactions due to a fabric
wrinkle.

The fixed-point problem can he reformulated
with the new operators as follows:

11 Fluid (Struct(p)) = p.

A resolving algorithm can be devised as follows.
At a given iteration the pressure field on sails p
is passed to the structural solver (Struct), which
returns the new sail geometries and the new sail
velocity fields. Afterwards, these guantities are
passed to the fluid solver (Fluid) which returns
the same pressure field p on sails. Clearly, the
“equal” sign holds only at convergence. The re-
sulting fixed-point iteration can be rewritten more
explicitly as follows: Given a pressure tield on sails
Pk, do:

(Gra1s Urs) = Struct(py)
{12) Prs1 = Fluid(Gra, Uger)
Yo = (1 — B pr + Oifray

where Gy, and Uy, are the sail geometry and the
sail velocity field at step k + 1, respectively, while
0y is a suitable acceleration parameter.

Even though the final goal is to run an unsteady
simulation, the fluid-structure procedure has to
run some preliminary steady couplings to provide

a suitable initial condition. The steady run iterates.

until a converged sail shape and flow field are
cbtained, where converged means that there does
exist a value of k. such that (11) is satisfied for
every k > k. {(within given tolerances on forces
and/or displacements). When running steady sim-
ulations the velocity of the sails is required to
be null at each coupling, thus somehow enforcing
the convergence condition {which prescribes null
velocities at convergence). This explains why cori-
vergence is slightly faster when running steady
simulations with respect to transient ones (clearly
only when such a solution reflects a steady state
physical solution).
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